A Review of Growing Interfaces in Quenched Disordered Media
نویسنده
چکیده
We make a review of the two principal models that allows to explain the imbibition of fluid in porous media. These models, that belong to the directed percolation depinning (DPD) universality class, where introduced simultaneously by the Tang and Leschhorn [Phys. Rev A 45, R8309 (1992)] and Buldyrev et al. [Phys. Rev. A 45, R8313 (1992)] and reviewed by Braunstein et al. [J. Phys. A 32, 1801 (1999); Phys. Rev. E 59, 4243 (1999)]. Even these models have been classified in the same universality class than the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889, (1986)] with quenched noise (QKPZ), the contributions to the growing mechanisms are quite different. The lateral contribution in the DPD models, leads to an increasing of the roughness near the criticality while in the QKPZ equation this contribution always flattens the roughness. These results suggest that the QKPZ equation does not describe properly the DPD models even when the exponents derived from this equation are similar to the one obtained from the simulations of these models. This fact is confirmed trough the deduced analytical equation for the Tang and Leschhorn model. This equation has the same symmetries than the QKPZ one but its coefficients depend on the balance between the driving force and the quenched noise.
منابع مشابه
Microscopic Equation for Growing Interfaces in Quenched Disordered Media
We present the microscopic equation of growing interface with quenched noise for the Tang and Leschhorn model [L. H. Tang and H. Leschhorn, Phys. Rev. A 45, R8309 (1992)]. The evolution equation for the height, the mean height, and the roughness are reached in a simple way. An equation for the interface activity density (or free sites density) as function of time is obtained. The microscopic eq...
متن کاملExact mapping of the stochastic field theory for Manna sandpiles to interfaces in random media.
We show that the stochastic field theory for directed percolation in the presence of an additional conservation law [the conserved directed-percolation (C-DP) class] can be mapped exactly to the continuum theory for the depinning of an elastic interface in short-range correlated quenched disorder. Along one line of the parameters commonly studied, this mapping leads to the simplest overdamped d...
متن کاملLévy walks and scaling in quenched disordered media.
We study Lévy walks in quenched disordered one-dimensional media, with scatterers spaced according to a long-tailed distribution. By analyzing the scaling relations for the random-walk probability and for the resistivity in the equivalent electric problem, we obtain the asymptotic behavior of the mean-square displacement as a function of the exponent characterizing the scatterers distribution. ...
متن کاملTheoretical continuous equation derived from the microscopic dynamics for growing interfaces in quenched media
We present an analytical continuous equation for the Tang and Leschhorn model [Phys. Rev. A 45, R8309 (1992)] derived from their microscopic rules using a regularization procedure. As well in this approach, the nonlinear term (nablah)(2) arises naturally from the microscopic dynamics even if the continuous equation is not the Kardar-Parisi-Zhang equation [Phys. Rev. Lett. 56, 889 (1986)] with q...
متن کاملEquilibrium of anchored interfaces with quenched disordered growth.
The roughening behavior of a one-dimensional interface fluctuating under quenched disorder growth is examined while keeping an anchored boundary. The latter introduces detailed balance conditions which allows for a simple but thorough analysis of equilibrium aspects at both macroscopic and microscopic scales. It is found that the interface roughens linearly with the substrate size only in the v...
متن کامل